skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harrison, Jacob_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis Rhagovelia oriander is a freshwater water strider native to the rivers and streams of North and South America, known for its distinctive skating movement on the water’s surface. This movement resembles the correlated random-walk pattern seen in microorganisms such as Escherichia coli. Previous studies have primarily focused on limb adaptations and biomechanics, leaving the ecological significance inadequately addressed. We combine field observations with controlled laboratory experiments using a flow mill to investigate the dynamics of R. oriander under typical flow conditions. Our findings indicate that this insect exhibits a two-dimensional run-and-tumble motion, often incorporating lateral tumbles following straight runs (run distance: $$30.7\pm 9.3$$ mm). We find that this behavior is resilient to changes in flow speed. In-silico simulations of particle interception demonstrated that this locomotion method enhances encounter rates compared to linear movement, particularly when the simulated food particle is following a rapid flow field. Our results document run-and-tumble locomotion in a millimeter-scale organism, showcasing a unique example of convergent behavior across diverse taxonomic groups and providing valuable insights into locomotion ecology while serving as a source of inspiration for bioinspired robotics and environmental exploration algorithms. 
    more » « less